Trigo	nometry		-	MATH 30-1 PRACTICE EXAM			
PART	1 - Machine Scored			Math30-1Power.com			
L				Visit us online for more Math 30-1 Study Materials			
1. Ar	n angle in standard position adians, is:	heta has reference angle	of 30° with $sin heta < 0$ and $sin heta = 0$	$tan \theta < 0$. A possible measure of θ , in			
А	$13\pi \frac{13\pi}{6}$	B. $-\frac{7\pi}{6}$	C. $-\frac{5\pi}{6}$	D. $\frac{23\pi}{6}$			
				Answers are on the back page Full, worked out solutions can be found at www.rtdmath.com			
2. A	2. An angle in standard position θ has $cos\theta < 0$ and $cot\theta < 0$. The best estimate for the value of θ , in radians, is:						
А	· 1.05	B. 2.62	C. 3.92	D. 5.24			
3. A ai A NR #1	n angle in standard position pproximately: A. 1.28 An angle in standard of a radian, the smal	θ has terminal arm th B. – 0.62 position θ , where 0 sets possible value of	at passes through a point θ C. 0.78 $\leq \theta \leq 2\pi$, has $sin\theta = -1/3$ θ is	$P(5, -4)$. The value of $sec\theta$ is D. -1.60 8. Correct to the nearest tenth			
4. A <i>tc</i> A	point on the unit circle has c an $\theta < 0$, then <i>m</i> is equal to: $\frac{8}{13}$	er.com oordinates $P(-\frac{5}{13},m)$ B. $-\frac{8}{13}$) and forms a principal ang ${ m C.}~~{12\over 13}$	the in standard position, θ . If D. $-\frac{12}{13}$			
	Jse the following information t	o answer question 5: dmath.com	← A rectangle with a circle with a centre	a base 15.84 cm in length intersects a C , at two points A and B as shown.			

5. Correct to the nearest tenth, the **perimeter** of the shaded portion of the rectangle is:

15.84 cm

В

A. 44.0 cm B. 46.8 cm C. 48.8 cm D. 4

7. The number of true statements is:

A. 1

B. 2

C. 3

D. 4

- 8. The graph of a function f(x) is shown, which can be expressed in the form $f(x) = a \sin [b(x-c)] + d$. The graph of g(x) is obtained from f(x) by changing the two parameters:
 - A. a and b B. a and c
 - C. b and d D. c and d

Use the following information to answer NR #3:

The graph shown models a sinusoidal function in the form f(x) = asinx - d, where a > 0 and d > 0. The point P is at a minimum. Consider the following statements:

worked out solutions can be found at www.rtdmath.com

- **9.** A sinusoidal function has an equation $y = 5sin (4x + \pi)$. The value of the **period** and the **horizontal phase shift** are, respectively:
 - A. $\frac{\pi}{2}, \frac{\pi}{4}$ B. $\frac{\pi}{2}, \pi$ C. 4, π D. 4, $\frac{\pi}{4}$

A sinusoidal function has an f

The **period** of the resulting graph, correct to the nearest whole number, is a two-digit number *ab* (*a* and *b* are the first two digits of your answer)

The **maximum value** of the function, correct to the nearest tenth, is *c.d* (*c* and *d* are the last two digits of your answer)

The values of *a*, *b*, *c* and *d* are:_____

10. The function f(x) = tan(4x) has a domain, where $n \in I$, of:

A.
$$x \neq \frac{\pi}{4} + \frac{n\pi}{2}$$
 B. $x \neq \frac{\pi}{4} + \frac{n\pi}{4}$ C. $x \neq \frac{\pi}{8} + \frac{n\pi}{2}$ D. $x \neq \frac{\pi}{8} + \frac{n\pi}{4}$

Use the following information to answer question 11:

A. 800π Hz	B. 400 <i>π</i> Hz	C. 800 Hz	D. 400 Hz

Use the following information to answer question 12:

The height of a nail caught in a tire rotating at a constant speed can be modeled by a sinusoidal function

$$h = asin[b(t - c)] + d$$

Where h is the height of a nail, in cm, after t seconds.

The graph shown models the height of a nail that starts at on the ground at a lowest position N at t = 0. The nail completes 20 rotations each minute.

12. The value of *a* and value of the phase shift *c* in the equation are, respectively: **13.** Which of the following steps could lead to a correct solution of the equation $2\cos^2\theta + 3\cos\theta - 2 = 0$?

A.
$$\cos\theta = \frac{1}{2} \operatorname{or} \cos\theta = -2$$
 B. $\cos\theta = \frac{1}{2} \operatorname{or} \cos\theta = -1$ C. $\cos\theta = \frac{-1}{2} \operatorname{or} \cos\theta = 2$ D. $\cos\theta = \frac{-1}{2} \operatorname{or} \cos\theta = 1$

14. The solution, on
$$\{0 \le x \le 2\pi\}$$
, to $3csc^2\theta - 4 = 0$ is θ equal to:
A. $\frac{\pi}{3'3} \frac{2\pi}{3}$
B. $\frac{\pi}{3'3} \frac{2\pi 4\pi}{3'3'3} \frac{5\pi}{3}$
C. $\frac{\pi}{6'} \frac{5\pi}{6}$
D. $\frac{\pi}{6'} \frac{5\pi}{6'} \frac{7\pi}{6}, \frac{11\pi}{6}$

15. A general solution of the equation $\sec^2 x - \sec x - 2 = 0$, where $n \in I$ is: A. $x = \frac{\pi}{3}n$ B. $x = \frac{\pi}{3} + 2\pi n$, $x = \frac{5\pi}{3} + 2\pi n$, $x = \pi n$ C. $x = \frac{\pi}{3}n + \frac{2\pi n}{3}$ D. $x = \frac{\pi}{3} + 2\pi n$, $x = \frac{5\pi}{3} + 2\pi n$, $x = 2\pi n$

16. The solution to the equation $log_2(tanx) + log_2(cosx) + 1 = 0$, where $\{0 \le x \le 2\pi\}$ is:

A. $x = \frac{\pi}{6}, \frac{5\pi}{6}, \frac{\pi}{2}$ B. $x = \frac{7\pi}{6}, \frac{11\pi}{6}$ C. $x = \frac{\pi}{6}, \frac{5\pi}{6}$ D. $x = \frac{7\pi}{6}, \frac{11\pi}{6}, \frac{\pi}{2}$

NR #6 The exact value of the trig ratio $cos(\frac{7\pi}{12})$ can be determined to be an irrational expression in the form $\frac{\sqrt{a} - \sqrt{b}}{c}$ where *a*, *b*, *c* are positive integers.

The value of *a* is ______ first digit, the value of *b* is ______ second digit and the value of *c* is ______. third digit

17. A point P(3, -5) lies on the terminal arm of an angle θ in standard position. The value of sin $(\pi - \theta)$ is:

18. The non-permissible values of the expression $\frac{tanx}{1+sinx}$ can be best written, where $n \in I$, as: A. $x \neq \frac{3\pi}{2} + 2\pi n$ B. $x \neq \pi n$, $x \neq \frac{3\pi}{2} + 2\pi n$ C. $x \neq \frac{\pi}{2} + \pi n$ D. $x \neq \pi n$, $x \neq \frac{\pi}{2} + 2\pi n$ Use the following information to answer NR#7:

Use the following information to answer NR#8:

An angle in standard position θ terminates in quadrant II, with $cos\theta = -4/5$.

The expression $tan2\theta$ simplifies to $-\frac{a}{b}$, where a, b are positive integers, a can be expressed in two digits and b is one. The three digits representing the values of *a* and *b* are _____.

PART 2 - Written Response

Use the following information to answer WR#1:

An angle in standard position θ passes through a point P(-5, 1) and a second angle in standard position β passes through a point Q(-3, -4).

* Written Response Question 1

• Fully **sketch** each angle in the correct quadrant labeling all sides of the triangle, and **determine** the value of each angle, correct to the nearest degree. (3 marks)

• Determine the exact value of $sin(\theta + \beta)$, written in the form $\frac{p}{q}$ (2 marks)

* Written Response Question 2

• Using a trigonometric identity, **simplify** the equation $2sin^2x - cosx - 1 = 0$ to express in terms of one trig function, where the lead coefficient is positive. (2 marks)

• Algebraically solve the resulting equation on $\{0 \le x < 2\pi\}$, and state a general solution. (3 marks)

* Written Response Question 3

• **Prove** the equation $\frac{cscx cosx}{tanx + cotx} = cos^2 x$ is an identity using an algebraic approach. (3 marks)

In San Diego, California the number of hours of daylight follows a sinusoidal pattern where the maximum hours of sunlight is 14.4 hours on day 173 (June 27th), and the minimum hours of sunlight is 9.6 hours on day 356 (Dec 22nd).

The function below is for a particular leap year of 366 days.

The hours of sunlight (H) can be modeled as a cosine function of day number (x):

* Written Response Question 4

• **Determine** the values of *a*, *b*, *c*, and *d* in the equation $H = a \cos[b(x - c)] + d$ (3 marks)

• The daily high temperature in San Diego can be modeled by the function T = 5.1 sin [0.524(d - 2.75)] + 23.9, where T is the temperature in degrees Celsius, and m is the number of months from the start of the year.

Use a graphing approach to **determine** the approximate total number of months, correct to the nearest tenth, where the daily high temperature would be above 26° C. (2 marks)

• A function of similar form to the last bullet is constructed for Calgary Alberta, where the temperatures are much cooler. **Explain** which of the two parameters *a*, *b*, *c*, and *d* would be different, and how. **Justify** your reasoning. (Note, on the actual diploma exam each WR question will have exactly two bullets)

Multiple Choice

1. D **2.** B **4.** C **5.** C 6. D **7.** C **10.** D **11.** D 3. A 8. B 9. A **18.** C^{WW.}**19.** B⁰⁻¹**20.** A^{COM} **12.** A^{math} **13.** A^{wer} **14.** B **15.** C **16.** C **17.** D

Numerical Response

1.3.5 2. 4.5 3. 125 4.5281 **5.** 41 **6.** 264 7.41 8. 247

Written Response

- **1.** First bullet $\theta = 169^{\circ} \beta = 233^{\circ}$ Second bullet $\frac{17}{5\sqrt{26}}$
- **2.** First bullet $2\cos^2 x + \cos x 1 = 0$ Second bullet $x = \frac{\pi}{3}, \pi, \frac{5\pi}{3}$ (any order) $x = \frac{\pi}{3} + \frac{2\pi}{3}n$ $n \in I$ (general sol.)
- **3.** First bullet See full solutions on <u>www.rtdmath.com</u> Second bullet $x \neq \frac{\pi}{2}n$, $n \in I$
- **4.** First bullet a = 2.4, $b = \frac{c}{183}$, c = 173, d = 12 Second bullet **4.4** total months above 26°C.
- *a* would be higher, as the range of Calgary temperatures (between min and max) would be greater Third bullet d would be lower, as the median temperature for Calgary (represented by d) would be lower

Also.... (not needed in your answer)

b would be **unchanged**, as the period for each city would be the same (12 months). Similarly, **c** would be essentially unchanged, as the number of months after which the min / max temperature occurs would be approximately the same as both cities are in the northern hemisphere.